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Abstract This paper concerns the low-rank minimization
problems which consist of finding a matrix of minimum
rank subject to linear constraints. Many existing approaches,
which used the nuclear norm as a convex surrogate of
the rank function, usually result in a suboptimal solution.
To seek a tighter rank approximation, we develop a non-
convex surrogate to approximate the rank function based
on the Laplace function. An iterative algorithm based on
the augmented Lagrangian multipliers method is developed.
Empirical studies for practical applications including robust
principal component analysis and low-rank representation
demonstrate that our proposed algorithm outperforms many
other state-of-the-art convex and non-convex methods devel-
oped recently in the literature.

Keywords Low-rank minimization · Non-convex approx-
imation · Iterative algorithm · Difference of convex
programming

1 Introduction

In this paper, we consider the low-rank minimization model

min
L ,S

rank(L) + λ‖S‖0 s.t. AL + S = D, (1)
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whereλ > 0 is aweight parameterwhich balances the contri-
bution of the rank versus the sparsity. D ∈ Rm×n is the data
matrix (without loss of generality, we assumem ≤ n). As we
know, both the rank function and the l0 norm are non-convex
and discontinuous. The convex relaxation replacing the rank
function and the l0 norm, respectively, with the nuclear norm
and l1 norm can be converted into

min
L ,S

‖L‖∗ + λ‖S‖1 s.t. AL + S = D, (2)

where ‖L‖∗ is defined as the sum of the singular values of
matrix L and ‖S‖1 = ∑

i j |Si j |. The following are some
interesting examples arising in many applications.

Example 1 Robust Principal Component Analysis (RPCA)
The RPCA problem seeks to recover a low-rank matrix L

plus a sparse matrix S from the corrupted data matrix D ∈
Rm×n , which can be formulated as

min
L ,S

‖L‖∗ + λ‖S‖1 s.t. L + S = D. (3)

Problem (3) can be written as (2) by defining A = I , where
I denotes the identity matrix. This formulation has received
broad attention in many applications, such as image process-
ing, computer vision, web data ranking and bioinformatics
[1–3]. Specifically, [1] has proved that when the rank of L
and the sparsity of S satisfy some mild conditions, L and S
can be exactly recovered with a high probability using (3).
Unfortunately, when the large errors fasten on a number of
columns of S, the convex relaxation (3)will fail. To overcome
this dilemma, [4] has proposed an outlier pursuit

min
L ,S

‖L‖∗ + λ‖S‖2,1 s.t. L + S = D, (4)
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where ‖S‖2,1 = ∑n
j=1

√∑m
i=1 S

2
i j . Under some mild con-

ditions, outlier pursuit (4) can exactly recover the column
support and exactly identify outliers.

Example 2 Low-Rank Representation (LRR)
Given the datamatrix A = [a1, a2, . . . , an] ∈ Rm×n , each

column of which is a sample. LRR aims to seek a low-rank
representation matrix L ∈ Rn×n showing mutual similarity
of the samples, or say LRR uses the data matrix A itself as
the dictionary, i.e., AL = A. Mathematically, LRR can be
formulated as

min
L

‖L‖∗ s.t. AL = A. (5)

In real applications, the data matrix A is often noisy or
even grossly corrupted. In the case of data contaminated by
outliers, LRR solves the convex optimization problem [5]

min
L ,S

‖L‖∗ + λ‖S‖2,1 s.t. AL + S = A. (6)

Problem (6) cannot be completely conformed to (2) by defin-
ing D = A, but there are still many similarities.

Low-rank minimization can be applied in transform-
invariant low-rank textures [6], matrix completion [7,8],
low-rank subspace clustering [9] and so on. The literature
[10] first gave a comprehensive overview to the concept of
low-rank modeling and summarized the models and algo-
rithms for low-rank matrix recovery. Furthermore, low-rank
minimizationhas been investigatedwith application to hyper-
spectral data recovery [11], accelerated dynamic magnetic
resonance imaging [12] and unveiling traffic anomalies [13].

There is no denying that the convex relaxation has made
great success in theoretical research and practical applica-
tions.However, there are still some shortages anddeficiencies
in the convex relaxation. On the one hand, the nuclear norm,
which adds all singular values together, is essentially the
l1 norm of the singular values. This implies that large sin-
gular values are penalized more heavily than small ones.
On the other hand, most theoretical analysis are based on
a strong assumption that the underlying matrix must sat-
isfy incoherence property, which may not be guaranteed
in practical scenarios. Moreover, the convex relaxation has
poor convergence rate as the matrix dimensions grow. From
what has been discussed above, the nuclear norm may not
be a good approximation of the matrix rank in some cases
[14,15]. Recently, solving low-rank minimization problems
has attracted broad attention by using non-convex proxy
instead of nuclear norm. Specifically, the popular non-convex
low- rank regularizers include l p norm (0 < p < 1) [16],
capped norms [14], truncated nuclear norm regularization
[15] and log-determinant function [17]. Motivated by the lit-
erature [18] which proposed a l0 norm minimization model

with different smooth approximations in seismic exploration,
we develop a non-convex Laplace function to achieve a more
accurate approximation to the rank of matrix than the nuclear
norm. Furthermore, we propose an efficient iterative algo-
rithm called NALM to solve the non-convex optimization
problem.

Our contribution
In this paper, we propose a novel non-convex approxi-

mation of the rank function called Laplace norm, which is
different from the nuclear norm. Our motivation stems from
the compressive sensing which is concerned with the recov-
ery of a sparse vector variable in some transform domain.
Compared with traditional nuclear norm minimization prob-
lem, our model based on the Laplace norm is a non-convex
problem. Thus, we present an iterative algorithm based on
the augmented Lagrangian multipliers method to solve the
non-convex optimization problem. Furthermore, we apply
difference of convex (DC) programming [19] to solve the
resulting subproblem which is a combination of concave and
convex functions. Our empirical studies with applications
to background extraction in surveillance video, face image
shadow removal and subspace clustering validate that our
proposed algorithm outperforms many other state-of-the-art
convex and non-convex methods and Laplace norm is a more
accurate and robust approximation to the rank function.

Organization
The rest of this paper is organized as follows. In Sect. 2,

we propose our non-convex rank formulation for the low-
rank minimization problem and provide a brief description
of the augmented Lagrangian multipliers method (ALM).
Sections 3 and 4 describe the procedure of NALM to solve
the robust principal component analysis and low-rank rep-
resentation problem, respectively. Experimental results are
presented in Sect. 5. Finally, we make some conclusions and
discussions in Sect. 6.

2 Proposed algorithm

In this section, we develop a novel non-convex matrix
rank approximation and give an overview to the augmented
Lagrangian multipliers method.

2.1 Laplace norm

We define the new norm of matrix L based on the Laplace
function as

rank(L) ≈ ‖L‖γ =
m∑

i=1

(
1 − e−σi (L)/γ

)
, γ > 0, (7)

which is called Laplace norm. Certainly, Laplace norm is
pseudo-norm but has nice properties.
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Fig. 1 Approximation of the rank function using Laplace norm,
nuclear norm and true rank with an increasing value of σ

Proposition 1 The Laplace norm has the following proper-
ties.

(1) lim
γ→0

‖L‖γ = rank(L).

(2) 1 − e−σi (L)/γ = 0 when σi (L) = 0.1

(3) ‖L‖γ is unitarily invariant, that is, ‖L‖γ = ‖ULV ‖γ

for any orthonormal U ∈ Rm×m and V ∈ Rn×n.
(4) positive definiteness: ‖L‖γ ≥ 0 for any L ∈ Rm×n and

‖L‖γ = 0 if and only if L = 0.

Figure 1 plots the approximation of the rank function using
Laplace norm, nuclear norm and true rank with an increas-
ing value of σ . It illustrates that the smaller the γ is, the
more accurate the Laplace norm approximation would be.
In our empirical evaluations, the low-rank matrix L can be
recoveredmore accurately than the nuclear normby choosing
proper γ .

2.2 Proposed non-convex formulation

With the above-mentioned Laplace norm, we consider the
general framework as follows

min
L ,S

‖L‖γ + λ‖S‖r s.t. AL + S = D. (8)

where r depends on various problems. For example, when
the low- rank minimization model (8) is used to solve LRR,
r = 2, 1.

1 The contribution of zero singular values in Laplace norm is the same
as the true rank function and the nuclear norm.

2.3 The augmented Lagrangian multipliers method

In Ref. [20], the augmented Lagrangian multipliers method
is introduced for solving the following constrained optimiza-
tion problem with linear equality constraints

min
Z

f (Z) s.t. MZ − B = 0, (9)

where f : Rp×q → R. The augmented Lagrangian function
for this problem is defined as

L(Z ,Λ,μ) = f (Z) + 〈Λ, MZ − B〉
+μ

2
‖MZ − B‖2F . (10)

where μ > 0 is called the penalty parameter and Λ is the
Lagrange multipliers. 〈·, ·〉 denotes the standard inner prod-
uct in a finite-dimensional Euclidean space and ‖ · ‖F is the
Frobenius norm of matrix variables. ALM first updates Z
by minimizing L(Z ,Λ,μ) with Λ being fixed and updates
Λ with Z fixed at its latest value, until some convergence
criteria are satisfied. The details of ALM are summarized in
Algorithm 1.

Algorithm 1 ALM:General framework of augmented
Lagrangian multipliers method
Require: Choose μ0 > 0 and Λ0, Set k = 0
1: while not converged do
2: Update Z : Zk+1 = argmin

Z
L(Z ,Λk , μk)

3: Update Λ: Λk+1 = Λk + β ∗ μ(MZk+1 − B);
4: Update μk to μk+1.
5: end while
Ensure: Zk

Recently, it has been shown that ALM is very efficient
and extensible for many large-scale programming problems
arising in statistics and machine learning [21,22], provided
that the resulting subproblems are sufficiently simple to have
closed-form solutions. In Sects. 3 and 4, we will focus on
the applications of RPCA and LRR using ALM. When the
resulting subproblems do not have closed-form solutions, we
apply difference of convex (DC) programming such that the
new subproblems can easily derive the closed-form solutions.

3 Application to robust principal component
analysis

Using Laplace norm to replace the nuclear norm, (4) can be
formulated as

min
L ,S

‖L‖γ + λ‖S‖2,1 s.t. L + S = D. (11)

This problem can be viewed as a special case of the non-
convex low- rank minimization model by defining A = I .
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Denoting Z = [LT , ST ]T , B = D, M = [I, I ] and
f (Z) = ‖L‖γ + λ‖S‖2,1, the constrained RPCA (11) then
can be rewritten as (9). The augmented Lagrangian function
of (11) is given by

L(L , S,Λ,μ) = ‖L‖γ + λ‖S‖2,1 + 〈Λ, L + S − D〉
+μ

2
‖L + S − D‖2F

Thus, step 2 of Algorithm 1 can be written as

(Lk+1, Sk+1) = argmin
L ,S

‖L‖γ + λ‖S‖2,1
+μ

2
‖L + S − D + Λk/μ‖2F . (12)

It is extremely difficult and trivial to solve the subproblem
(12) concerning with matrix variables L and S simultane-
ously. Following the idea of nonlinear block Gauss–Seidel
(NLBGS) technique, we can update L and S alternatively by
keeping the other fixed at its latest value and then update the
Lagrange multiplier, i.e.,

Sk+1 = argmin
S

λ‖S‖2,1 + μ

2
‖Lk + S − D

+Λk/μ‖2F ; (13)

Lk+1 = argmin
L

‖L‖γ + μ

2
‖L + Sk+1 − D

+Λk/μ‖2F ; (14)

Λk+1 = Λk + βμ(Lk+1 + Sk+1 − D),

β ∈
(

0,

√
5 + 1

2

)

(15)

where β is a step length. β aims to update the penalty param-
eter μ in each iteration, which is recommended in [7,22,23].

As to (13), we can obtain its closed-form solutions by the
following lemma.

Lemma 1 [24,25] Given a matrix Wk = D − Lk − Λk/μ,
then the subproblem

min
S

1

2
‖S − Wk‖2F + λ

μ
‖S‖2,1 (16)

has a closed-form solution Sk+1 and the j th column of Sk+1

is

Sk+1(:, j)

=
⎧
⎨

⎩

‖Wk (:, j)‖2− λ
μ

‖Wk (:, j)‖2 Wk(:, j), i f λ
μ

< ‖Wk(:, j)‖2
0, otherwise.

(17)

As described earlier, the subproblem (14) is non-convex
due to the concave Laplace norm. The intrinsic structure of
the objective function in (14), which is a combination of
concave and convex functions, motivates us to apply the dif-
ference of convex (DC) programming. We follow the similar

linearization technique of the concave term in each itera-
tion. The gradient of Laplace norm is given in the following
lemma.

Lemma 2

∂‖L‖γ =
{
Udiag(l)V T : li = e−σi (L)/γ /γ

}
(18)

where the columns of U and V are the left and right singular
vectors of L, respectively.

According to Lemma 2, at the (k + 1)th iteration the sub-
problem (14) can be reformulated as

Lk+1 = argmin
L

〈∂‖Lk‖γ , L〉

+μ

2
‖L + Sk+1 − D + Λk/μ‖2F (19)

Computing the derivative of (19)with respect to L and setting
the derivative to 0, we get

∂‖Lk‖γ + μ(L + Sk+1 − D + Λk/μ) = 0. (20)

It is easy to prove that the solution of (20) can be obtained
by

Lk+1 = D − Sk+1 − (Λk + ∂‖Lk‖γ )/μ. (21)

Now, a pseudo-code of the iterative scheme based on the
ALM approach for (11) is as follows in Algorithm 2.

Algorithm 2 NALM1:Augmented Lagrangian Alternating
Direction Method for non-convex RPCA
Require: Given data matrix D ∈ Rm×n , choose μ > 0, L0, Λ0 and

tol > 0, Set k = 0.
1: while not converged do
2: Update Sk+1 using (17);
3: Compute the gradient ∂‖Lk‖γ using (18);
4: Update Lk+1 using (21);
5: Update Λk+1 using (15).
6: end while
Ensure: Lk , Sk

4 Application to low-rank representation

Using the Laplace norm as the approximation of the rank
function, the low-rank representation (6) can be written as

min
L ,S

‖L‖γ + λ‖S‖2,1 s.t. AL + S = A. (22)

As discussed in [17,26,27], the observed data matrix A may
be corrupted by impulsive noise which is spare but large
and Gaussian noise which is small but dense under realis-
tic situations. Then, the data matrix can be formulated as
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A = AL + S + E , where S, E stand for the impulsive noise
matrix and the Gaussian noise matrix, respectively. Taking
both kinds of noise into consideration, we propose to opti-
mize the following formula

min
L ,S,E

‖L‖γ + λ1‖S‖2,1 + λ2‖E‖2F s.t.

AL + S + E = A. (23)

By introducing an auxiliary variable X = L , the optimization
problem (23) can be transformed as

min
X,L ,S

‖L‖γ + λ1‖S‖2,1 + λ2‖A − AX − S‖2F s.t.

X = L . (24)

The augmented Lagrangian function of (24) is

L(X, L , S,Λ,μ) = ‖L‖γ + λ1‖S‖2,1
+λ2‖A − AX − S‖2F + 〈Λ, L − X〉
+μ

2
‖L − X‖2F . (25)

Thus, the iterative scheme of ALM for (24) can be sum-
marized as follows

Xk+1 = argmin
X

λ2‖A − AX − Sk‖2F + μ

2
‖Lk − X

+Λk/μ‖2F ; (26)

Sk+1 = argmin
S

λ1

λ2
‖S‖2,1 + ‖S − A + AXk+1‖2F ; (27)

Lk+1 = argmin
L

‖L‖γ + μ

2
‖L − Xk+1 + Λk/μ‖2F ; (28)

Λk+1 = Λk + βμ(Lk+1 − Xk+1), β ∈
(

0,

√
5 + 1

2

)

.

(29)

The solution of (26) is given by

Xk+1 =
(
2λ2A

T A + μI
)−1 (

2λ2A
T A − 2λ2A

T Sk

+μLk + Λk

)
. (30)

We use the similar techniques as described in Sect. 3 to
solve the subproblems (27) and (28). According to Lemma
1, the closed-form solution Sk+1 can be gained by

Sk+1(:, j)

=
⎧
⎨

⎩

‖Wk (:, j)‖2− λ1
2λ2‖Wk (:, j)‖2 Wk(:, j), i f λ1

2λ2
< ‖Wk(:, j)‖2

0, otherwise,
(31)

where Wk = A − AXk+1.
The DC programming is employed to solve the subprob-

lem (28) whose gradient can be obtained by Lemma 2. Then,

the original non-convex subproblem (28) can be solved by a
series of convex problems, i.e.,

Lk+1 = argmin
L

〈∂‖Lk‖γ , L〉

+μ

2
‖L − Xk+1 + Λk/μ‖2F . (32)

More specifically, the closed-form solution of (32) is obtain-
able by

Lk+1 = Xk+1 − (Λk + ∂‖Lk‖γ )/μ. (33)

Based on the aforementioned analysis, the procedure of
applying ALM to solve (23) is outlined in Algorithm 3.

Algorithm 3 NALM2:Augmented Lagrangian Alternating
Direction Method for non-convex LRR
Require: Given data matrix A ∈ Rm×n , choose μ > 0, L0,S0, Λ0 and

tol > 0, Set k = 0
1: while not converged do
2: Update Xk+1 using (30);
3: Update Sk+1 using (31);
4: Compute the gradient ∂‖Lk‖γ using (18);
5: Update Lk+1 using (33);
6: Update Λk+1 using (29).
7: end while
Ensure: Lk

5 Experimental results

In this section, we present several experiments that validate
our proposed algorithm and demonstrate its performance in
some practical applications including background extraction
in surveillance video, face image shadow removal and sub-
space clustering. The first two applications belong to RPCA,
while the last application pertains to LRR. All the exper-
iments were performed on a Lenovo laptop with an Intel
Core i3-3240T 2.90GHz CPU that has 4 cores and 4GB of
memory, running with Windows 8 and MATLAB (R2013a).

5.1 Experimental settings and implementation details

Our numerical experiments can be divided into two broad
categories.

(1) In Sects. 5.2 and 5.3, we will compare our proposed
NALM1 with the state-of-the-art robust principal com-
ponent analysis algorithms: IALM [22]which focused on
solving (3) by using the nuclear norm, GoDec [28] which
developed the non-convex RPCA formulation by using
iterative hard thresholding and NcRPCA [29] which
consisted of alternating between projecting appropriate
residuals onto low-rank and sparse matrices.
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(2) In Sect. 5.4, we will compare our NALM2 with the state-
of-the-art subspace clustering algorithms: SSC [30],
LRSC [9], LSA [31], SCC [32] and LRR [5].

In our experiments, unless otherwise specified we fol-
low the default values for parameters used in the solvers.
In Sects. 5.2 and 5.3, the weight parameter λ in (3) was sug-
gest to λ = 1/

√
max(m, n) in [1,2]. However, we find that λ

with small magnitude is proper to our algorithm and we set
λ = 10−4. For the penalty parameter, μ is also chosen to set
an increasing sequence of values, which is similar to IALM.
The step length β is set β = 1.618 and the initial value ofμ is
equal to 10−3, 0.5, respectively. We set γ = 10−2, which is
crucial to the Laplace norm since it determines the efficiency
of the low-rank approximation. In Sect. 5.4, λ, β, μ, γ are
set λ1 = 0.1, λ2 = 5, β = 1.618, μ0 = 1, γ = 5 × 10−2,
respectively.

In Sects. 5.2 and 5.3, the stopping criterion we used to
terminate the involved algorithms is the following relative
error rule

RelErr = ‖Lk + Sk − D‖F
‖D‖F ≤ tol,

where tol> 0 is a predefined tolerance and is set tol= 10−3.
To evaluate both effectiveness and efficiency of involved
algorithms, we use the relative error (denoted by RelErr),
the rank of L (denoted by Rank(L)), the CPU time in sec-
onds (abbreviated as Time(s)) and the number of iterations
(abbreviated as Iter). In Sect. 5.4, following [9], we use the
subspace clustering error defined as

clustering error = # of misclassified points

total # of points
(34)

to evaluate the performance of involved algorithms.

5.2 Background extraction in surveillance video

A key application of RPCA is background extraction in
surveillance video [1,33], which aims to detect moving
objects from a stationary background. In this experiment,
a benchmark data set escalator which is downloaded from
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
is used for RPCA. The data set contains a color (three
channels) video with 3417 frames of 130 × 160 size. Our
experiments employ both grayscale and color videos, which
are different from the experiments in [1,10,28] and similar
to the experiments in [34]. As is common that by stacking
each frame as a column vector in the lexicographic order,
we get a data matrix D whose columns are consistent with
the sequence of the video frames. Due to memory limitation,
in the first example which uses a sequence of 100 grayscale

Table 1 Comparison results of NALM1, IALM, GoDec and NcRPCA
with the grayscale and color videos

Algorithms Escalator/escalator (c)

RelErr Rank(L) Time(s) Iter

NALM1 4.88e−6/4.93e−6 1/1 0.85/3.27 1/1

IALM 9.89e−4/6.79e−4 40/141 7.67/30.24 17/19

GoDec 9.43e−4/7.99e−4 1/3 48.65/115.64 100/100

NcRPCA 9.89e−4/6.79e−4 1/3 8.53/23.19 45/45

frames from escalator, the data matrix D is in R20800×100.
However, the data matrix D is in R20800×300 in the second
examplewhich employs a sequence of 100 color frames from
escalator.

As stated in [35], the matrix of aligned images will have
low rank, ideally rank one, so we set the desired rank in
GoDec and NcRPCA for the grayscale video to be one,
however, and to be three for the color video. The experi-
mental results are depicted in Table 1. In Table 1, Escalator(c)
denotes the tested color videos and the notation ae−bmeans
a × 10−b. From Table 1, we can observe that NALM1 is at
least ten times faster and has higher accuracy than the other
involved algorithms. Figure 2a, b depicts a visual compari-
son of background extraction using different algorithms. As
can be seen, the non-convex algorithms including GoDec,
NcRPCA and NALM1 result in better visual effect than the
convex algorithm IALM, since the three moving escalators
are removed to the foreground. Although our NALM1 is
slightly worse in vision than NcRPCA, it is much faster than
GoDec, NcRPCA and IALM. In addition, compared with
IALMwhich results in L with rank 40, NALM1, GoDec and
NcRPCA can obtain the desired rank-one matrix L using
grayscale videos.

5.3 Face image shadow removal

Another important application of RPCA in [1] is removing
artifacts such as shadows, specularities and saturations from
face images. In this experiment, we use face images from the
Extended Yale B database [36] which has 38 subjects; each
subject has 64 images of size 192 × 168. So the data matrix
D is in R32256×64 for each subject.

As illustrated in Fig. 2c, our proposed algorithm removes
the artifacts including local defects as the sparse component,
while the performance of other algorithms suffers in the pres-
ence of some artifacts. Notice that the non-convex algorithms
are superior to IALM. Table 2 states a quantitative compari-
son among the four algorithms. Similar to the conclusion in
Sect. 5.2, NALM1 is at least ten times faster and has higher
accuracy than the competing algorithms.
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Fig. 2 Using RPCA for background extraction (a, b) and face image
shadow removal (c). The rows from top to bottom correspond to the
original video or the original face images, the low-rank components

and sparse components, respectively. The columns from left to right
in (a–c) are implemented by NALM1, IALM, GoDec and NcRPCA,
respectively

Table 2 Comparison results of NALM1, IALM, GoDec and NcRPCA
with the Extended Yale B database

Algorithms Extended Yale B database

RelErr Rank(L) Time(s) Iter

NALM1 3.07e−6 1 0.46 1

IALM 6.40e−4 32 5.87 17

GoDec 2.67e−3 1 53.56 100

NcRPCA 6.40e−4 1 10.41 49

5.4 Clustering and classification

After obtaining the low-rank representation matrix L from
(23), we follow the idea of [5] to construct the affinity matrix
that is used to perform spectral clustering in a way similar to
[37]. Following the previous work [9], we resize all images
from the Extended Yale B database to 48 × 42 pixels and
vectorize each image as a data point to construct the data
matrix A. Inspired by [30], we divide the the 38 objects into
four groups: subjects 1–10, 11–20, 21–30, 31–38. For each
of the first three groups, all choices of n ∈ {2, 3, 5, 8, 10}
are considered, and for the last group, all choices of n ∈
{2, 3, 5, 8} objects are considered. Finally, we implement the
subspace clustering algorithm on each set of n subjects.

The clustering error rates defined as (34) of NALM2 as
well as the LSA, SCC, LRR, LRSC and SSC whose results
are cited from [30] on Extended Yale B database are given
in Table 3. As can be seen from Table 3, our proposed non-
convex algorithm NALM2 has superior performance than
other competing algorithms in terms of mean accuracy for
all cases. Unfortunately, NALM2 is inferior but comparable
thanSSC in caseswith twoor three objects, however, superior
on other cases. Moreover, NALM2 based on the non-convex
regularizer is more stable than LRR [5] using the convex

Table 3 Clustering error rates (%) of different algorithms on Extended
Yale B database

Method LSA SCC LRR LRSC SSC NALM2

2 Objects

Mean 32.80 16.62 9.52 5.32 1.86 1.55

Median 47.66 7.82 5.47 4.69 0.00 0.078

3 Objects

Mean 52.29 38.16 19.52 8.47 3.10 2.33

Median 50.00 39.06 14.58 7.81 1.04 1.56

5 Objects

Mean 58.02 58.90 34.16 12.24 4.31 3.15

Median 56.87 59.38 35.00 11.25 2.50 2.25

8 Objects

Mean 59.19 66.11 41.19 23.72 5.85 3.90

Median 58.59 64.65 43.75 28.03 4.49 3.32

10 Objects

Mean 60.42 73.02 38.85 30.36 10.94 4.11

Median 57.5 75.78 41.09 28.75 5.63 2.97

The lowest clustering error rates are highlighted in bold

nuclear norm whose error rates increase thoroughly as the
number of subjects increases.

6 Conclusions and discussion

This paper focuses on studying a non-convex approach to
the low-rank minimization problem, which involves extract-
ing a low-rank structure, by a novel approximation of the rank
function called Laplace norm. Our proposed formulation can
give more accurate approximation to the rank function than
the nuclear norm. This is due to the fact that unlike tradi-
tional nuclear norm, which adds all singular values together,
Laplace norm can give the balanced penalization for different
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singular values. In addition, we present a simple and effi-
cient iterative algorithm based on the augmented Lagrangian
multipliers method to solve the non-convex optimization
problem. Numerical experimental results demonstrate that
our proposed algorithmoutperformsmany other state-of-the-
art convex and non-convex approaches.

On the other hand, we hope that our current idea will
motivate to extend the proposed Laplace norm in the low-
rank matrix completion occurring in image inpainting and
recommender systems.
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